Improving Remaining-fatigue-life Evaluation Using Data Interpretation
نویسندگان
چکیده
This paper presents a methodology that improves fatigue-performance evaluations using model-based data interpretation. The accuracy of stress-range values is essential for quantifying fatigue damage. These values are usually predicted using physics-based models such as those used within finite element analyses. In the modelling process, simplifications are inevitable, thus causing systematic errors in model predictions. Structural health monitoring coupled with model-based data-interpretation approaches have the potential to reduce uncertainties associated with the evaluation of stress-range predictions. Because of the presence of modelling and measurement uncertainties, many models may explain the true structural behaviour. A model falsification approach, which is able to cope with incomplete knowledge of uncertainties, is used to isolate candidate models from an initial population of models. This approach is robust for systematic errors that are correlated spatially. The candidate models that are identified using the model-falsification approach predict stress ranges in structural members, from which the remaining fatigue life is determined. Due to the uncertainty reduction in model predictions during data interpretation, the accuracy of the fatigue prognosis is improved. A steel beam composed of a circular hollow-section truss is studied for illustration. Monitoring data that is interpreted using a model-falsification methodology shows potential for improving evaluations of remaining fatigue life.
منابع مشابه
Improving Fatigue Evaluations of Structures Using In-service Behavior Measurement Data
Conservative models and code practices are usually employed for fatigue-damage predictions of existing structures. Direct in-service behavior measurements are able to provide more accurate estimations of remaining-fatigue-life predictions. However, these estimations are often accurate only for measured locations and measured load conditions. Behavior models are necessary for exploiting informat...
متن کاملPrep rint Vers ion
4 Real behavior of existing structures is usually associated with large uncertainty that is often 5 covered by the use of conservative models and code practices for the evaluation of remaining fa6 tigue lives. In order to make better decisions related to retrofit and replacement of existing bridges, 7 new techniques that are able to quantify fatigue reserve capacity are required. This paper pre...
متن کاملApplication of J-BMS to Performance Evaluation and Remaining Life Prediction of an Existing RC Bridge
This paper describes a method of performance evaluation and remaining life prediction for an aged reinforced concrete (RC) T-girder bridge by J-BMS RC version via close visual inspection data, and also verifies the assessment results obtained as outputs from the Bridge Rating Expert System (RC-BREX) which is a subsystem of the J-BMS, to evaluate the effectiveness of the system. The Bridge Manag...
متن کاملRemaining Fatigue Life Predictions Considering Load and Model Parameters Uncertainty
Fatigue-driven damage propagation is one of the most unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and/or random operational loads during their service life. Therefore, monitoring the critical components of these systems, assessing their structural integrity, recursively predicting their remaining fatigue life (RFL), and providing ...
متن کاملEvaluation of Fatigue Properties of Asphalt Mixtures Containing Reclaimed Asphalt using Response Surface Method
This paper presents the effects of different amounts of reclaimed asphalt on fatigue life of asphalt mixtures. Central composite method was used to design of experiments based on response surface method (RSM). Binder type (Pen 60/70 and Pen 85/100), reclaimed asphalt pavement (RAP) content (25, 50 and 75%) and loading strain (150, 250 and 350 micro strain) were selected as independent variables...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013